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A non-linear, single-degree-of-freedom model is developed to describe the vortex-in-
duced, transverse vibration of a circular cylinder, elastically suspended in a wind flow. The
model is appropriate for predicting the dynamic response during lock-in conditions. The
‘‘linear-in-the parameters’’ nature of the model allows the formulation of a relatively simple
and computationally very efficient procedure for estimating all the unknown parameters
in the model. The method, based on the use of a state variable filter, enables the parameters
to be estimated recursively by processing digitized records of the cylinder dynamic response.
The technique is validated by applying it to both simulated data, where the parameters are
known a priori, and to real data obtained from an experimental rig placed in a wind tunnel.
For the experimental data, which relates to time-varying wind flow conditions, representing
the natural wind, it is shown that the estimation technique allows the response during
lock-in events to be isolated and treated separately. A reasonably good fit to the
experimental data is obtained and the resulting estimates of the mean values of the
parameters are found to converge satisfactorily.
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1. INTRODUCTION

Steady wind flow around a fixed circular cylinder will result in vortex shedding over a wide
range of Reynolds number with a frequency, vs , that is, by and large, proportional to the
far field velocity. This vortex shedding produces a fluctuating transverse force on the
cylinder. Thus, if the cylinder is elastically suspended, such that it is free to vibrate in a
transverse direction, a resonant vibration will occur when the vortex shedding frequency
is close to the natural frequency of the cylinder and its suspension system, vn .

It is well known that transverse vibration can lead to significant changes in the
surrounding flow. Under suitable conditions the vortex shedding becomes much more
coherent, and ‘‘locked-in’’ to the cylinder vibration, with vs 1vn , over a rather wide range
of wind velocity, resulting in a significant increase in the magnitude of the fluctuating
transverse force. Thus there is a feedback effect during lock-in which can lead to large
amplitude vibration (e.g., see references [1, 2]). This aero-elastic phenomenon is important
in structural wind engineering because its occurrence may induce fatigue damage at ‘‘hot
spots’’ in wind exposed tubular structures.

If the wind flow is not steady the wind velocity varies continuously, and randomly, with
time and hence vs also tends to vary randomly. When vs approaches vn a lock-in event
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can occur with the amplitude building up rapidly, due to the feedback phenomenon. Such
an event can last for many cycles, during which time vs becomes synchronized with vn ,
to a close approximation, and the vibration is almost sinusoidal, with a slowly varying
amplitude. The lock-in event ceases when the wind velocity changes to the extent that
synchronization can no longer be maintained. Thus the dynamic response to a non-steady
(e.g., turbulent) wind can be regarded as a random process. In a typical realization, or
sample function, of this process lock-in events appear as randomly occurring bursts of high
amplitude vibration, within a background of much lower level random vibration. Since
the time taken for the vibration to decay after a lock-in can be appreciable, the decay may
not be completed before the next lock-in event occurs. Thus, depending on the frequency
with which they occur, the lock-in events may appear to overlap each other to some extent.

In this paper attention is focused on modelling the dynamic behaviour during the lock-in
events which occur randomly when the flow is turbulent. For this purpose a simple,
single-degree-of-freedom model is adopted. Previous studies (e.g., [3–5]) have shown that
such models may be adequate for the purposes of predicting the response amplitude. On
the basis of data acquired under steady flow conditions a specific linear-in-the-parameters
model is formulated. It is shown, through an analysis of both simulated and real
experimental data, that the parameters in the model can be successfully estimated in a
recursive fashion by applying a state-variable estimation method to dynamic response
data. For the experimental data the estimation technique allows the data relating to lock-in
events to be isolated and treated separately.

For the experimental data discussed here both the size of the test cylinder and magnitude
of the turbulence intensity is significantly greater than in the experiments of most previous
workers. For example, as regards cylinder size, the cylinder used by Goswami et al. [4]
was one quarter of that in the present work. The turbulence intensity in most experiments
reported in the literature is usually very small, and may be considered negligible: in
contrast, in the present experimental work, the turbulence level is similar to that found
in the natural wind and is a very important factor.

2. THE EQUATION OF MOTION

2.1.   

The system under consideration is shown schematically in Figure 1. It consists of a
circular cylinder, of diameter D and length L, immersed in a fluid of density r. The fluid
velocity, in a direction orthogonal to the cylinder axis, is U=U� + u, where U� is the mean
velocity and u is a fluctuation with respect to the mean. The cylinder is suspended

Figure 1. Elastically supported cylinder with transverse airflow.
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elastically such that it is free to vibrate transversely, in the direction x. It is assumed that
the suspension can be represented as a linear spring, of stiffness k, in parallel with a linear
viscous damper, with coefficient c.

Since only transverse motion is under consideration the governing equation of motion
may be written as

m(ẍ+2zvnẋ+v2
nx)=F(t)= 1

2rU2DLf(t), (1)

where

z=0·5c/zkm , v2
n = k/m (2)

and m is the mass of the cylinder. Here z is the usual non-dimensional damping ratio and
vn is the undamped natural frequency. F(t) represents the fluid induced transverse force.
Since, for the experiments to be discussed later, the fluid medium is air the fluid inertial
force, m0ẍ, where m0 is the added mass, is assumed to be negligible. As indicated in
equation (1), the fluid force is non-dimensionalized, as f(t), through the introduction of
the dynamic pressure, rU2/2 and the transverse area DL.

The simplicity of equation (1) is deceptive since the real modelling difficulties arise in
the mathematical representation of the scaled fluid force, f(t). This will depend not only
on the flow velocity but also on the history of the motion of the cylinder, in a complex
and non-linear way.

Previous studies (e.g., [4, 5]) have indicated that, during lock-in conditions, when the
amplitude of motion is relatively high and approximately sinusoidal, the fluid force can
be adequately represented as a function of the instantaneous motion of the cylinder. This
motion can be expressed in terms of

X= x/D, Y= ẋ/U, (3)

where X, Y are, respectively, a non-dimensional displacement and velocity. Thus

f(t)= f(X, Y, l), (4)

where l is an n-vector of parameters: i.e.,

l=[l1, l2, . . . , ln ]T. (5)

In general the values of the parameters will depend on the wind velocity. If the fluid force
is such that there is negative overall damping at small amplitudes and a positive overall
damping at high amplitudes then limit cycles will occur. The amplitude of these cycles may
be determined from the condition that the total energy dissipation in one cycle is zero.

For the purpose of analysis it is very convenient, for the reasons discussed in section
3, to adopt a linear-in-the-parameters form for f(t). A suitable such form, for the present
purposes, is

f(t)= l1g1(X, Y)+ · · ·+ ln−1gn−1(X, Y)+ lnX. (6)

Here the first n−1 terms model the energy dissipation and the last term represents an
aerodynamic stiffness. The first term in equation (6) will be assumed to be linear with
respect to velocity: i.e.,

g1(X, Y)=Y. (7)

Combining equations (1) and (6) one obtains an equation of motion of the form

ẍ+2zvnẋ+ h(x, ẋ, U)+v2
m(U)x=0, (8)



.    . . 620

where

h(x, ẋ, U)= s
n−1

i=1

miU2gi (X, Y) (9)

is a non-linear damping term and

v2
m(U)=v2

n + mnU2/D, mi =−rDLli /2m, i=1, . . . , n. (10)

For limit cycles to occur one expects that m1U+2zvn Q 0 and at least one of the remaining
damping parameters to be positive.

In the case of a turbulent wind the variation of U with time introduces a significant level
of complexity into the model. If the turbulence intensity, s/U� (where s is the r.m.s. of u),
is appreciably less than unity then the equation of motion can be considerably simplified
by assuming that U may be replaced by U� . Then equation (8) reduces to

ẍ+2zvnẋ+ h(x, ẋ)+v2
mx=0, (11)

where

h(x, ẋ)= s
n−1

i=1

aigi (X, Y), (12)

v2
m =v2

n + an /D, ai = miU� 2, i=1, . . . , n. (13)

In the experimental work to be discussed later the turbulence intensity was about 20%.
An example of this linear-in-the-parameter model is the Van der Pol representation, used

by a number of researchers (e.g., see reference [2]). Here n=3 and

h(x, ẋ)= a1Y+ a2X2Y. (14)

Clearly, here g2(X, Y)=X2Y.

2.2.     

An appropriate form for the fluid damping term can be determined through processing
experimental data, relating to constant wind velocity, to obtain the variation of the
response amplitude with time, during a lock-in event. Here it will be assumed that the
structural damping term, 2zvnẋ, in equation (11) is negligibly small, compared to the fluid
damping. In fact, this represents no loss of generality since, if the structural damping is
not negligible then the form deduced will be applicable to the combined damping
contributions.

The amplitude, a(t), and phase, 8(t), of the response can be defined uniquely by the
relationships

x(t)= a cos f, ẋ(t)=−avm sin f, (15)

where

f=vmt+8. (16)

Transforming equation (11) into amplitude and phase variables one obtains a first order
differential equation for the amplitude, as follows:

ȧ=(1/vm )h(a cos f, −avm sin f) sin f. (17)
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Figure 2. Response amplitude versus time for constant wind velocity. The thick line is a polynomial of ninth
degree fitted to the measured amplitude.

If the damping is light then both a and 8 are constant over one cycle, to a good
approximation: in these circumstances, following the method of Kryloff and Bogoliubov
(e.g., [6]) the right side of this equation may be averaged over one cycle to give

ȧ=(1/vm )H(a), (18)

where

H(a)=
1
2p g

2p

0

h(a cos f, −avm sin f) sin f df. (19)

H(a) is proportional to minus the rate of energy dissipation with respect to time. Thus,
using the assumption that 8 is approximately constant over one cycle, one has, from
equation (16), df=vm dt and hence

G h(x, ẋ) dx=G h(x, ẋ)ẋ dt=−aH(a). (20)

Equation (18) shows that if the derivative of a, as deducted from measured data, is plotted
against a then an estimate of the function H(a) is obtained.

Figure 2 shows a typical variation of amplitude, a, with time during a lock-in event.
The data was obtained from the experiments described in section 6 with a nominally
constant wind velocity. There is a relatively small, high frequency component, due to the
turbulence in the wind tunnel, which had an intensity of about 4·0%. If the data is
smoothed by fitting a polynomial function then, as shown in Figure 2, the amplitude rises
monotonically from an initially low level to the limit cycle amplitude, which is almost
constant.

If the derivative of the smoothed amplitude shown in Figure 2 is plotted against
amplitude the curve shown in Figure 3 is obtained. According to equation (18), this curve
is proportional to the function H(a). The estimated H(a) function rises to a maximum
value and then falls to a small fluctuation about zero, at the limit cycle amplitude. The
overall variation is reasonably well represented by a fifth order polynomial of odd order,
as shown in Figure 3. Thus

H(a)= g1a+ g2a3 + g3a5, (21)
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where the parameters g1, g2 and g3 were found by fitting equation (21) to the estimated
function, in a least squares sense. At small amplitudes the first term in equation (21) is
dominant and H(a) rapidly increases, and linearly, with increasing amplitude. The
parameters of the remaining two, non-linear terms, g2, g3, are both negative and these terms
become dominant at high amplitudes.

For the present purposes a form for h(x, ẋ), corresponding to equation (21), is needed.
The mapping from H(a) to h(x, ẋ) is not unique: a wide variety of forms for h(x, ẋ) will
yield the same form of H(a). For example, both

h(x, ẋ)= a1Y+ a2Y3 + a3Y3 (22)

and

h(x, ẋ)= a1Y+ a2X2Y+ a3X4Y (23)

will give the form of H(a) given in equation (21). It is noted that the first two terms in
equation (23) correspond to the Van der Pol model for damping (see equation (14)).

For lightly damped systems the precise form of the damping function h(x, ẋ) is not
important provided that the variation of the rate of energy dissipation with amplitude is
correct. Thus here the simple velocity dependent form given by equation (22) is chosen.
The linear term this equation can include the structural damping contribution, since
2zvnẋAY.

The damping form given by equation (22) may still be appropriate in the case a
time-varying wind but the parameters can be expected to vary randomly from one lock-in
event to another. This variation may be attributed, at least in part, to changes in the wind
velocity, U, (see equations (9) and (10)) but other factors, such as the effect of initial
conditions at the beginning of a lock-in event, may also be important. In the present paper
it will be assumed, in the main, that the mean values of the parameters can be estimated
by treating them as constants, when fitting models to the data. However, some attempt
is also made to estimate the variation of the parameters, across a sequence of lock-in
events.

2.3.        

On combining equations (11) and (22) one obtains the following linear-in-the-par-
ameters, parametric form for the equation of motion, referred to henceforth as Model A:

ẍ+ a1ẋ+ a2ẋ3 + a3ẋ5 + px=0. (24)

Figure 3. The derivative of the amplitude versus the amplitude. The dashed curve was obtained by fitting a
fifth degree polynomial of odd order terms.



  -  623

Here

a1 =2zvn + a1/U� , p=v2
m =v2

n + a4/D, (25)

a2 = a2/U� 3, a3 = a2/U� 5. (26)

In this approach one inherently assumes that the parameters may be treated as constants,
for the purpose of estimating their mean values, as discussed above. It is also assumed that
U may be approximated by U� (see section 2).

Some allowance for the effect of the time variation of U may be made by using equation
(8) rather than equation (11): i.e., replacing ai by miU2 and using U rather than U� . Instead
of equations (24) to (26) one then has

ẍ+ b1(U)ẋ+ b2(U)ẋ3 + b3(U)ẋ5 + p(U)x=0, (27)

where

b1 =2zvn + m1U, p=v2
n + m4U2/D, (28)

b2 = m2/U, b3 = m3/U3. (29)

This model will be referred to henceforth as model B. Again the mean values of the
parameters in this model can be found by treating them as constants, when fitting the
model to the data.

3. PARAMETRIC IDENTIFICATION

The following parametric identification problem will now be addressed: how can sample
functions of the response process, x(t), over some period of time 0-T, be processed to yield
estimates of the mean values of the parameters (a1, p, a2, a3) in Model A, or the mean
values of the parameters (b1, p, b2, b3) in Model B? Here a solution to this problem will
be developed for Model A, in some detail. The same method can be applied to Model B
but, since the same basic steps are involved, details are omitted here.

Since the equation of motion is applicable only during lock-in events it is necessary to
isolate these sections from the complete displacement record, when applying an estimation
method. Lock-ins can be defined to begin when the amplitude starts to increase
significantly and to stop when the amplitude starts to fall (see section 5). If the lock-in
sections are spliced together, to form a new truncated record, there will inevitably be
discontinuities at the joins which need to be accounted for.

The fact that the equation of motion is linear-in-the-parameters means that one is
dealing with a linear estimation problem. This is a great advantage since linear estimation
methods are, in general much simpler, and computationally more efficient, than non-linear
methods.

Here a linear method, based on the state variable filter approach (e.g., see references
[7, 8]), is employed. One of the basic ideas in this method is to move all the unknown
parameters to the right side of the equation of motion so that the quantities associated
with them can be treated as inputs to a known system. This can be achieved by adding
c1ẋ+ c2x to both sides to equation (24) and introducing the new parameters

f1 = a1 − c1, f2 = p− c2. (30)

On rearranging, the equation of motion becomes

ẍ+ c1ẋ+ c2x=−f1ẋ− f2x− a2ẋ3 − a3ẋ5. (31)
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Here the parameters c1, c2 are filter parameters which are treated as known constants, which
can be set to any desired values. Both c1 and c2 need to be positive to guarantee that the
linear filter, represented by the left side of equation (31), is stable. In addition the filter
parameters must be chosen so that the pass band of the filter encompasses the predominant
frequencies in the system response.

With this rearrangement the unknown parameters are now f1, f2, a2 and a3. These need
to be augmented by two further parameters, d1 and d2, to allow for non-zero initial
conditions:

w1 = x(0), w2 = ẋ(0). (32)

Thus the parameter vector of unknowns is

uT = [f1, f2, a2, a3, d1, d2]. (33)

To implement a linear estimation scheme it is useful to introduce four auxiliary
functions, y1(t), y2(t), y3(t), y4(t), where

x= f1ẏ1 + f2y1 + a2y2 + a3y3 + d1ẏ4 + d2y4. (34)

It follows, by substitution into equation (31), that equation (34) is a solution if the auxiliary
functions satisfy the differential equations

ÿi + c1ẏi + c2yi = vi (t), i=1, 2, 3, 4, (35)

where

v1 =−x, v2 =−ẋ3, v3 =−ẋ5, v4 =0. (36)

If the initial conditions are set as

yi (0)= ẏi (0)=0, i=1, 2, 3, (37)

y4(0)=0, ẏ4(0)=1, (38)

then the following relationships exist between d1, d2 and the initial conditions:

w1 = d1, w2 = d2 − d1(f1 + c1). (39)

Introducing matrix notation equation (34) can be written as

x(t)=XT(t)u, (40)

where

XT(t)= [ẏ1, y1, y2, y3, ẏ4, y4]. (41)

The parameter vector can be estimated by minimizing the least-squares cost function

J= s
N

i=0

[x(ti )−XT(ti )u]2, (42)

where it assumed that the response process is measured at times ti .
Equation (42) is the basis for the least squares estimation method. The vector X(ti ) can

be found by numerically solving equations (35) (for example, by using the fourth order
Runge–Kutta algorithm) since vi (t) can be derived directly from the measured response.

It is possible to generate the parameter vector recursively, at each time step, by using
the algorithm given in the Appendix. Discontinuities in the data, arising from splicing, can
be fully accounted for, readily, in the recursive approach, by estimating the parameters
d1 and d2 anew at the beginning of each section (see the Appendix). Since only d1 and d2

are re-estimated at each join, rather than all the parameters, the evolution of the system
parameters is not interrupted by the joins, resulting in a very efficient estimation scheme.
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T 1

Final estimated system parameters for different time steps

True Estimated Estimated Estimated Estimated Estimated
values Dt=0·005 s Dt=0·004 s Dt=0·003 s Dt=0·002 s Dt=0·001 s

a1 −0·600 −0·756 −0·725 −0·693 −0·662 −0·630
p 767·3 766·9 767·0 767·1 767·1 767·2
a2 0·70 0·830 0·805 0·778 0·751 0·729
a3 0·50 0·263 0·309 0·355 0·402 0·433

By tracking the system parameters continuously, through each join, the degree of
convergence obtainable for the whole, concatenated data record can be examined. If the
blocks of data were simply processed separately then all the parameters would need to be
re-estimated at each join, with loss of efficiency, and convergence of the systems parameters
within each block would be uncertain.

4. ANALYSIS OF SIMULATED DATA

To test the estimation algorithm, with Model A, it was applied to some simulated data,
obtained by numerically solving the governing equation of motion (equation (24)). Data
was simulated for a duration of 60 s, with a time step of 0·004 s and a natural frequency,
fm =vm /2p, of 4·41 Hz. This gives about 57 data points per cycle. The initial conditions
were set to ẋ(0)=0, x(0)=0·01 m and the parameters were chosen as follows:
a1 =−0·60, a2 =0·70 and a3 =0·50. The two parameters c1 and c2 were set to 0·10 and
710, respectively. Thus the true values of the parameters in u are as given in Table 1. With
this set of values the response was found to reach its steady state, limit cycle, amplitude
after about 15 s.

Figures 4 show the evolution of the estimated values of the four system parameters, f1,
f2, a2, a3, with time, as obtained by applying the recursive state variable filter method. Here

Figure 4. Variation of the four system parameter estimates with time: simulated data with no noise.
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T 2

Estimated values for different noise levels

True Estimated Estimated Estimated Estimated
values s=0·01A s=0·02A s=0·05A s=0·10A

a1 −0·600 −0·730 −0·714 −0·734 −0·710
p 767·3 767·0 767·0 767·0 767·0
a2 0·70 0·844 0·717 0·896 0·739
a3 0·50 0·249 0·449 0·143 0·376

f1 and f2 are plotted, rather than a1 and p: conversion is easily achieved by using equations
(30). It is seen that the parameter estimates converge satisfactorily, stabilizing after about
30 s. However, the final estimates differ to some extent from the true values. These errors
are due to numerical integration errors associated with the use of a finite time step and
they reduce significantly if the time step is reduced, as shown by the results in Table 1 (in
each case the simulated data consisted of 15 000 points). It is worth noting that, in all cases,
an excellent fit to the data is obtained. The parameters a2 and a3 are the most difficult to
estimate accurately; this is due to the fact that they ‘‘trade-off’’ against each other, so far
as the representation of non-linear damping is concerned. Thus, whilst a2 is overestimated,
a3 is underestimated with the effect that the true overall dissipation is accounted for
correctly. To a lesser extent there is also a trade-off between the linear and non-linear
damping parameters.

Experiments with splicing sections of simulated data together, and accounting for the
resulting discontinuities by using the method outlined in the Appendix, gave very similar
results to those in Table 1, thus validating the method of dealing with spliced data.
However, the information content in data relating to the steady, low level response is
relatively small so, if this kind of data predominates in a concatenated data set, the
convergence may be much slower.

To test the influence of measurement noise of the accuracy of the estimation a sequence
of independent, scaled Gaussian random numbers were added to the simulated data. This
simulated the presence of a wide-band measurement noise. Table 2 shows some typical
results for various noise levels. It can be seen that, in general, the estimation is not sensitive
to the influence of noise, the parameters a2 and a3 (especially) being most affected. This
is not surprising in view of the results in Table 1 and the estimates in Table 2 show again
the trade-off between a1, a2 and a3.

Figure 5 shows some typical evolutions of the parameter estimates with time in a case
where simulated measurement noise is present (Dt=0·004 s). It can be seen that the
principal effect of noise is to decrease the rate at which the parameters converge to stable
values.

5. ANALYSIS OF MEASURED WIND TUNNEL DATA

5.1.  

The data used in the present paper was obtained from experiments carried out in a wind
tunnel with a test section 1·75 m wide, 1·53 m high and 13·6 m long. Under steady flow
conditions the turbulence intensity in the test section was approximately 4·0%. A
fluctuating wind flow could be generated by sending appropriate signals to a wind
generating propeller machine. These signals were simulated sample functions of a
stationary Gaussian process with a non-zero mean and a prescribed power spectrum.
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Figure 5. As Figure 4 but with added noise (standard deviation s=0·05A).

The model was a circular Plexiglas cylinder with an outer diameter of 0·20 m and a
length of 1·65 m. The cylinder was suspended horizontally on four springs allowing the
model to oscillate in the vertical direction, orthogonal to the mean wind velocity vector.
There was no arrangement to eliminate the along-wind vibrations but, because the load
fluctuations in this direction are very small, these vibrations were in fact negligible. The
mechanical mass of the oscillating system (cylinder, tubes, wires, transducers and added
mass from the springs) was 13.3 kg. The model was positioned 11·6 m downstream of the
end of the contraction. A diagram of the experimental set-up is shown in Figure 6.

For the experimental work a set of springs with an overall stiffness of 3·2 N/mm was
chosen. Damping, in addition to that occurring naturally in the suspension system, was
provided by magnetic means. Aluminum plates, 3 mm thick and 60 mm wide were attached
to the ends of a rod mounted on the cylinder axis, as shown in Figure 6. The flow-induced
vibration caused these plates to move between the poles of permanent magnets, thereby
inducing eddy currents on the plate surfaces. The integrated effect of such eddy currents
was a magnetomotive force proportional to, and directed opposite to, the cylinder velocity,
thus providing viscous damping to the system. The magnitude of this damping force could
be controlled by varying the size of the gap between the magnetic poles.

Figure 6. Cylinder suspension system, in elevation.
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Figure 7. Experimental time histories. The upper curve in each figure is the wind far field velocity and the
lower curve is the corresponding amplitude of the vibrating cylinder. (a) Case A; (b) Case B.

The accelerations of the cylinder were measured by two accelerometers placed at the
ends of the cylinder: the velocity and displacement was obtained by integration. The wind
velocity was measured by a hot-wire anemometer probe placed 1·0 m in front of the
cylinder. The data was obtained by sampling the velocity and displacement measurements
digitally at rates between 200 and 250 Hz.

5.2.  

All measurements analysed here were obtained by using the experimental facility
described above. The natural frequency in still air was f1 =4·43 Hz.

Figures 7 shows simultaneous variations of the measured far field wind velocity and the
corresponding transverse cylinder displacement, in the case where a randomly fluctuating
wind flow was generated. For the data in Figure 7(a) (case A) the structural damping ratio
(z) was 0·47% and for the data in Figure 7(b) (case B) z was 0·31%; these values were
estimated from free decay tests.

The data used for the estimation was determined on the basis of the variation of the
cylinder vibration amplitude. A ‘‘lock-in’’ event was defined to begin when the amplitude
started to increase and to stop where the amplitude started decreasing again. Figure 8
shows a typical lock-in event, identified by a visual inspection of the complete response
record shown in Figure 7(a). It can be seen that the amplitude build-up is slow and that
the start and end of the lock-in is reasonably well defined. For the present purposes the
start and end were determined by eye. An alternative method of detecting the occurrence
of a lock-in event is to check for coincidence of the vortex shedding frequency with the
natural frequency of the system. However, the first method was preferred because the
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measured amplitude represents the response to the average wind force over the entire
length of the cylinder. In the second method the vortex shedding frequency could be
inferred, in the present experiments, only from the pressure fluctuations at a few
cross-sections.

For case A a concatenated data set consisting of nine such lock-in events was
constructed (total number of data points 28 744; sampling rate 250·0 Hz). For case B the
concatenated set consisted of eight ‘‘lock-in’’ events (total number of data points 27 273:
sampling rate 200·3 Hz).

5.3.     

Model A was fitted to these sets using the recursive identification method described in
section 3. In Figures 9 the evolution of the system parameter estimates with time is shown,
for both cases, again as obtained by using the state variable estimation method discussed
in section 3. It is seen that the parameter f2, corresponding to the stiffness, converges
quickly, and that the estimates of the parameters corresponding to the damping, a1, a2 and
a3, are less stable. This behaviour is expected in view of the simulation results shown in
section 4, which demonstrated the trade-off effect between these three parameters.
Nevertheless, a reasonable degree of convergence is achieved, especially in Case A.
Moreover, the model gives a very good fit to the data. Thus the predicted amplitude, during
the estimation, nearly coincides with the measured data, as shown in Figures 10.

The estimates of the parameters are given in Table 3. From section 4 it is known that,
for the sampling rates used here, the estimates of the parameters f1 and a2 are too large
and the estimate of a3 is too small. The simulation results given in Table 1 indicate that
the parameters should be slightly corrected to allow for the error introduced by the
relatively low sampling rate. The appropriate correction was found through an iterative
process. Thus simulated data was generated with the sampling rate used in the experiments,
and with parameter values equal to those estimated from the experimental data. The
estimation errors incurred through the use of this sampling rate were then evaluated and
the parameters adjusted iteratively until the simulation results coincided with the estimated
from the experimental data. The corrected values are shown in brackets in Table 3.

Also shown in Table 3 are the estimated values of the fluid damping parameter

a1f = a1 − a1s = a1 −2zvn , (43)

Figure 8. Definition of lock-in start and lock-in end.
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Figure 9. Evolution of the six parameter estimates with time. The vertical lines indicate where the data has
been spliced together. (a) Case A; (b) Case B.

where a1s is the structural damping contribution. Since the only difference between the
Cases A and B is the level of structural damping it is perhaps surprising, at first sight, that
the fluid damping parameters, a1f , a2 and a3, are significantly different. However, if the total
fluid damping force

ff (t)= a1fẋ+ a2ẋ3 + a3ẋ5 (44)
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Figure 10. Comparison of the measured amplitude (solid line) with the estimated amplitude during the
estimation (dashed line). (a) Case A; (b) Case B.

is plotted against ẋ, as in Figure 11, it can be seen that, for the range of velocity which
encompasses the data, there is in fact a good agreement. Thus the trade-off errors of the
individual parameters self cancel, to a large degree, when the overall damping level is
considered.

It can also be seen from the results in Table 3 that the estimated natural frequency, fm ,
is very close to the natural frequency of the system in still air. Thus wind motion has a
negligible effect on the overall stiffness of the system (i.e., the value of the parameter a4

is negligibly small).

T 3

Final estimated system parameters obtained from experimental data

fm =vm /2p
a1 a1f a2 a3 p=v2

m (Hz)

Case A −0·33 −0·59 1·6 4·5 769·2 4·41
corrected (−0·27) (−0·51) (1·4) (4·8) – –

Case B −0·27 −0·44 0·30 2·8 772·4 4·41
corrected (−0·17) (−0·34) (0·26) (3·2) – –
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Figure 11. Variation of the damping force with velocity, for Cases A and B.

It is noted that, if the data sets are spliced together in different sequences the final
estimates differ slightly but the general pattern of the results is preserved.

On solving the differential equation (24) with the corrected parameters, and the correct
initial conditions the envelope shown in Figure 12 is obtained. This is seen to agree well
with the measured amplitude. In contrast, the amplitude tends to become too large when
the uncorrected estimated parameters are used. There is some systematic overprediction
of the rate of growth of the displacement, especially in Case B, attributable to the inherent
deficiencies in the model.

As pointed out earlier, one would expect the parameters to exhibit some degree of
randomness and the estimates given in Table 3 are actually estimates of the mean values
of the parameters. The present method allows for the possibility of estimating the
parameters separately, within each lock-in event, rather than estimating them as common
values across all the lock-in events. However, here the individual lock-in events are, in
general, too short to obtain satisfactory estimates. This limitation is illustrated by the
results shown in Figure 13. Here the parameter a3 is estimated afresh during each event:
thus a3 is initialized, together with the initial conditions, at every join in the concatenated
set. As seen from Figure 13 the estimated value of a3 now fluctuates more but the time
durations of the lock-in events are too short to obtain convergence.

Figure 12. Comparison of the measured amplitude (solid line) with the amplitude estimated by using final
parameter estimates. The dotted line is obtained when the estimated parameters are used and the smooth solid
line is obtained when the corrected parameters are used. Left, Case A; right, Case B.
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Figure 13. Evolution of the estimate of a3 when it is initialized at each join; Case A.

If an equivalent logarithmic decrement and an asymptotic amplitude for the load model
are calculated, and compared to the mean values found by Christensen and Ditlevsen [9],
a reasonably good agreement is obtained.

5.4.     

In principal Model B should be more accurate, since fewer approximations are involved.
If, in the light of the results obtained for Model A, the aerodynamic stiffness term, m4,

is assumed to be negligible then the equation of motion for model B can be written as

ẍ+ c1ẋ+ c2x=−f1ẋ− f2x− m1(Uẋ)− m2(ẋ3/U)− m3(ẋ5/U3), (45)

where

f1 =2zvn − c1, f2 =v2
n − c2. (46)

Figures 14 show the evolution of the estimates of f1, f2, m1, m2 and m3 with time, as
obtained by applying the recursive estimation method the experimental data (here case A).
The overall level of fit is similar to that achieved with Model A and the estimation of the
parameter, f2, is again, very robust and accurate, giving an estimate of vn in close
agreement with that found by using Model A. However, two unexpected features emerge
in the estimation of the damping parameters. Firstly, the parameter f1, although reasonably
stable, does not converge to the value corresponding to structural damping (0·16). This
suggests the presence of a simple linear aerodynamic term, as in Model A. Secondly the
parameter m3 is very small and makes a negligibly small contribution. On this basis the
fluid force can be represented by

F(t)= k1ẋ+ k2(Uẋ)+ k2(ẋ3/U), (47)

where k1, k2 and k3 are constants. However, on the basis of the data analyzed here (case
B data gave similar results to case A) the representation given by equation (47) appears
to offer no significant improvement over that used in Model A: i.e.,

F(t)= h1ẋ+ h2ẋ3 + h3ẋ5, (48)

where h1, h2 and h3 are constants.
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Figure 14. Evolution of the five system parameters with time; Model B, Case A. The vertical lines indicate
where the data has been spliced together.

7. CONCLUSIONS

The main conclusions of this paper are summarized as follows.
1. A simple, single-degree-of-freedom, linear-in-the-parameters model can be used to

describe the vibration response of an elastically suspended circular during ‘‘lock-in’’.
2. An appropriate form for the energy dissipation terms in the model can be derived

from data relating to steady flow conditions by using the averaging method due to Kryloff
and Bogoliubov.

3. A state variable filter method can be used to estimate all the parameters in the model,
by processing measured displacement response histories during lock-in events. The method
has been validated through simulation studies.

4. Application of the identification technique to measured wind tunnel data results in
estimates of the mean values of the parameters which converge satisfactorily and give a
reasonably good fit to the data.

5. The two model variants examined gave a similar degree of fit to the data, suggesting
that there is no benefit in using the more complex one, which incorporates the time
dependency of the wind fluctuation.
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APPENDIX

A suitable recursive least squares algorithm for the generation of estmates, u
 i , of the
parameter vector, u, at each time step in the data, ti , is summarized. The algorithm is very
fast, since it avoids the need for matrix inversion.

At time ti one computes the following:

(a) Ki =Pi−1Xi /(1+XT
i Pi−1Xi ); (A1)

(b) u
 i = u
 i−1 +Ki [xi −XT
i u
 i−1], updated estimate; (A2)

(c) oi (u
 i )= xi−1 −XT
i u
 i−1, prediction error, (A3)

(d) Pi =Pi−1 −KiXT
i Pi−1, update of the covariance matrix. (A4)

It is necessary to initiate the calculation by setting an initial value to the covariance matrix,
corresponding to high level of uncertainty. It is convenient to set

P0 = aI (A5)

where I is the unit matrix and a is a large number.
At the first join, arising from splicing, the estimates of the parameters d1 and d2 in u are

reset to zero. Those off-diagonal and diagonal elements of P relating to d1 and d2 are also
reset to zero. All the other elements of P are retained at their values immediately preceding
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the join. The recursive algorithm is then implemented until the second join is reached,
where u and P are reset, as at the first join, and so on. A more detailed discussion and
analysis of this procedure is given by Gawthrop [7]. If desired, other parameters can be
re-estimated in each section by zeroing appropriate elements of u and P at the joins, in
a manner similar to that described for d1 and d2.


